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Nikodym’s Uniform Boundedness Principle

A measure µ on a Boolean algebra A is a signed real-valued
finitely additive function of finite variation.

A sequence of measures 〈µn : n < ω〉 is

pointwise bounded if supn |µna| <∞ for every a ∈ A,

uniformly bounded if supn ‖µn‖ <∞.

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If A is a σ-algebra, then every pointwise bounded sequence of
measures on A is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz
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The Nikodym Property

Definition

A sequence 〈µn : n < ω〉 on A is anti-Nikodym if it is pointwise
bounded on A but not uniformly bounded.

Definition

An infinite Boolean algebra A has the Nikodym property (N) if
there are no anti-Nikodym sequences on A.
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The Nikodym Property

Notable examples

σ-algebras (Nikodym ’30)

,

algebras with Subsequential Completeness Property (Haydon
’81),

the algebra of Jordan measurable subsets of [0, 1]
(Schachermayer ’82; generalized by Wheeler & Graves ’83).

However, if the Stone space KA of A has a convergent sequence,
then A does not have (N):

if xn → x , then put µn = n(δxn − δx)
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The Nikodym Number

All the notable examples are of cardinality at least c.

Question

Is there an infinite Boolean algebra with (N) and cardinality less
than c?

The Nikodym number

n = min{|A| : infinite A has (N)}.

If |A| = ω, then KA ⊆ 2ω, so A does not have (N). Thus:

ω1 ¬ n ¬ c.
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The first bound – the splitting number s

If the Stone space KA of A has a convergent sequence, then A
does not have (N).

The splitting number

F ⊆ [ω]ω is splitting if for every A ∈ [ω]ω there exists B ∈ F such
that:

A ∩ B ∈ [ω]ω and A \ B ∈ [ω]ω.

s = min{|F| : F ⊆ [ω]ω is splitting}.

Theorem (Booth ’74)

s = min{κ : there is a compactum X of weight w(X ) = κ
which is not sequentially compact}.

Corollary

s ¬ n.
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The second bound – the bounding number b

f ∈ ωω dominates g ∈ ωω if g(n) < f (n) for all but finitely many
n ∈ ω.

F ⊆ ωω is dominating if every f ∈ ωω is dominated by some
g ∈ F .

F is unbounded if there is no f ∈ ωω dominating every g ∈ F .

d = min{|F| : F ⊆ ωω is dominating}.

b = min{|F| : F ⊆ ωω is unbounded}.

Proposition

b ¬ n.
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The second bound – the bound number b

Barrelled argument

All metrizable barrelled spaces have dimension at least b.
(Saxon–Sanchez-Ruiz ’96)

If A has (N), then the space of all simple functions on KA is
barrelled. (Schachermayer ’82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence
〈µn : n < ω〉 such that ‖µn‖ = 1 and µn(a)→ 0 for every a ∈ A.
If |A| < b, then there exists c ∈ c0 dominating 〈|µn(a)| : n < ω〉
for every a ∈ A.
Put νn = µn/cn.
〈|νn(a)| : n < ω〉 is bounded for every a ∈ A but ‖νn‖ → ∞.
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The lower bounds

Corollary

n  max(b, s).

Theorem (Balcar–Pelant–Simon ’80)

It is consistent that ω1 = s < b. (Hence, it is consistent that
s < n).

Theorem (Shelah ’84)

It is consistent that ω1 = b < s = ω2. (Hence, it is consistent that
b < n).

Note that d  max(b, s). Also note that under Martin’s axiom
b = s = d = c, hence n = d under MA.

Question

Is it consistent that n < d?
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Algebra with (N) and cardinality ω1

N – the Lebesgue null ideal

cof(N ) = min{|F| : F ⊆ N – cofinal: ∀A ∈ N∃B ∈ F : A ⊆ B}

Note that ω1 ¬ d ¬ cof(N ) ¬ c.

Theorem (D.S.)

Assume that cof(N ) = κ for a cardinal number κ < c such that
cof([κ]ω) = κ.Then, there exists a Boolean algebra B with the
Nikodym property and cardinality κ.

So, if κ as above and cof(N ) = κ, then n ¬ cof(N ).
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Algebra with (N) and cardinality ω1

Main Lemma

If cof(N ) = κ, then for every countable Boolean algebra A there
exists a family {〈aγn ∈ A : n ∈ ω〉 : γ < κ} of κ many antichains
in A with the following property:

for every anti-Nikodym sequence of measures
〈µn : n < ω〉 there exist γ < κ and an increasing
sequence 〈nk : k < ω〉 of naturals such that for every
k < ω the following inequality is satisfied:

∣∣µnkaγk ∣∣ > k−1∑
j=0

∣∣µnkaγj ∣∣+ k + 1.
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Consequence – cofinality of Boolean algebras

Definition

cof(A) = min{κ : ∃〈Aξ : ξ < κ〉 ↗ A}.

Theorem (Koppelberg ’77)

1 ω ¬ cof(A) ¬ c,
2 (MA) If |A| < c, then cof(A) = ω.

Theorem (Just–Koszmider ’91)

In the Sacks model there exists a Boolean algebra B such that
|B| = cof(B) = ω1.

Theorem (Pawlikowski–Ciesielski ’02)

Assuming cof(N ) = ω1, there exists a Boolean algebra B such that
|B| = cof(B) = ω1.
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Consequence – cofinality of Boolean algebras

Theorem (Schachermayer ’82)

If A has the Nikodym property, then cof(A) > ω.

Corollary

Assuming cof(N ) = κ for κ such that cof([κ]ω) = κ, there exists a
Boolean algebra with cardinality κ and cofinality ω1.

Question

Is there a consistent example of a Boolean algebra B for which
ω1 < cof(B) < c?
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Consequence – the Efimov problem

Definition

An infinite compact Hausdorff space is a Efimov space if it
contains neither a convergent sequence nor a copy of βω.

The Efimov Problem ’69

Does there exist a Efimov space?

Fedorčuk: CH, ♦, s = ω1 & c = 2ω1

Dow: cof([s]ω) = s & 2s < 2c

and many more...

Theorem (Pawlikowski–Ciesielski ’02, D.S.)

Assuming cof(N ) = ω1, there exists a Efimov space.
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The end

Thank you for your attention.
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