Damian Sobota

Institute of Mathematics, Polish Academy of Sciences

Winter School, Hejnice 2015

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

A **measure** μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

- A sequence of measures $\langle \mu_{\textit{n}}: \textit{n} < \omega \rangle$ is
 - pointwise bounded if $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$,

A **measure** μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

- A sequence of measures $\langle \mu_{\textit{n}}: \textit{n} < \omega
 angle$ is
 - pointwise bounded if $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$,
 - uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

A **measure** μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

- A sequence of measures $\langle \mu_{\textit{n}}: \textit{n} < \omega \rangle$ is
 - pointwise bounded if $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$,
 - uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

Theorem (Nikodym's Uniform Boundedness Principle '30)

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A **measure** μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

- A sequence of measures $\langle \mu_{\textit{n}}: \textit{n} < \omega \rangle$ is
 - pointwise bounded if $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$,
 - uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

Theorem (Nikodym's Uniform Boundedness Principle '30)

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz

Definition

A sequence $\langle \mu_n : n < \omega \rangle$ on \mathcal{A} is *anti-Nikodym* if it is pointwise bounded on \mathcal{A} but not uniformly bounded.

Definition

A sequence $\langle \mu_n : n < \omega \rangle$ on \mathcal{A} is *anti-Nikodym* if it is pointwise bounded on \mathcal{A} but not uniformly bounded.

Definition

An infinite Boolean algebra \mathcal{A} has the Nikodym property (N) if there are no anti-Nikodym sequences on \mathcal{A} .

• σ -algebras (Nikodym '30)

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81)

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0, 1] (Schachermayer '82; generalized by Wheeler & Graves '83).

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0, 1] (Schachermayer '82; generalized by Wheeler & Graves '83).

However, if the Stone space K_A of A has a convergent sequence, then A does not have (N):

if
$$x_n \to x$$
, then put $\mu_n = n(\delta_{x_n} - \delta_x)$

The Nikodym Number

All the notable examples are of cardinality at least \mathfrak{c} .

All the notable examples are of cardinality at least \mathfrak{c} .

Question

Is there an infinite Boolean algebra with (N) and cardinality less than $\mathfrak{c}?$

All the notable examples are of cardinality at least \mathfrak{c} .

Question Is there an infinite Boolean algebra with (N) and cardinality less than c?

The Nikodym number

 $\mathfrak{n} = \min\{|\mathcal{A}| : \text{ infinite } \mathcal{A} \text{ has } (\mathsf{N})\}.$

All the notable examples are of cardinality at least \mathfrak{c} .

Question Is there an infinite Boolean algebra with (N) and cardinality less than c?

The Nikodym number

 $\mathfrak{n} = \min\{|\mathcal{A}| : \text{ infinite } \mathcal{A} \text{ has } (N)\}.$

If $|\mathcal{A}| = \omega$, then $\mathcal{K}_{\mathcal{A}} \subseteq 2^{\omega}$, so \mathcal{A} does not have (N). Thus:

 $\omega_1 \leq \mathfrak{n} \leq \mathfrak{c}.$

If the Stone space K_A of A has a convergent sequence, then A does not have (N).

If the Stone space K_A of A has a convergent sequence, then A does not have (N).

The splitting number

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is **splitting** if for every $A \in [\omega]^{\omega}$ there exists $B \in \mathcal{F}$ such that:

 $A \cap B \in [\omega]^{\omega}$ and $A \setminus B \in [\omega]^{\omega}$.

 $\mathfrak{s}=\min\{|\mathcal{F}|:\ \mathcal{F}\subseteq[\omega]^{\omega} \text{ is splitting}\}.$

If the Stone space K_A of A has a convergent sequence, then A does not have (N).

The splitting number

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is **splitting** if for every $A \in [\omega]^{\omega}$ there exists $B \in \mathcal{F}$ such that:

 $A \cap B \in [\omega]^{\omega}$ and $A \setminus B \in [\omega]^{\omega}$.

 $\mathfrak{s}=\min\{|\mathcal{F}|:\ \mathcal{F}\subseteq[\omega]^{\omega} \text{ is splitting}\}.$

Theorem (Booth '74)

 $\mathfrak{s} = \min\{\kappa : \text{ there is a compactum } X \text{ of weight } w(X) = \kappa \text{ which is not sequentially compact}\}.$

If the Stone space K_A of A has a convergent sequence, then A does not have (N).

The splitting number

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is **splitting** if for every $A \in [\omega]^{\omega}$ there exists $B \in \mathcal{F}$ such that:

 $A \cap B \in [\omega]^{\omega}$ and $A \setminus B \in [\omega]^{\omega}$.

 $\mathfrak{s}=\min\{|\mathcal{F}|:\ \mathcal{F}\subseteq[\omega]^{\omega} \text{ is splitting}\}.$

Theorem (Booth '74)

 $\mathfrak{s} = \min\{\kappa : \text{ there is a compactum } X \text{ of weight } w(X) = \kappa \text{ which is not sequentially compact}\}.$

Corollary

 $\mathfrak{s} \leqslant \mathfrak{n}$.

The second bound – the bounding number ${\mathfrak b}$

 $f \in \omega^{\omega}$ dominates $g \in \omega^{\omega}$ if g(n) < f(n) for all but finitely many $n \in \omega$.

 $\mathcal{F} \subseteq \omega^{\omega}$ is **dominating** if every $f \in \omega^{\omega}$ is dominated by some $g \in \mathcal{F}$.

 \mathcal{F} is **unbounded** if there is no $f \in \omega^{\omega}$ dominating every $g \in \mathcal{F}$.

The second bound – the bounding number \mathfrak{b}

 $f \in \omega^{\omega}$ dominates $g \in \omega^{\omega}$ if g(n) < f(n) for all but finitely many $n \in \omega$.

 $\mathcal{F} \subseteq \omega^{\omega}$ is **dominating** if every $f \in \omega^{\omega}$ is dominated by some $g \in \mathcal{F}$.

 \mathcal{F} is **unbounded** if there is no $f \in \omega^{\omega}$ dominating every $g \in \mathcal{F}$.

 $\mathfrak{d} = \min\{|\mathcal{F}|: \ \mathcal{F} \subseteq \omega^{\omega} \text{ is dominating}\}.$

 $\mathfrak{b} = \min\{|\mathcal{F}|: \mathcal{F} \subseteq \omega^{\omega} \text{ is unbounded}\}.$

The second bound – the bounding number ${\mathfrak b}$

 $f \in \omega^{\omega}$ dominates $g \in \omega^{\omega}$ if g(n) < f(n) for all but finitely many $n \in \omega$.

 $\mathcal{F} \subseteq \omega^{\omega}$ is **dominating** if every $f \in \omega^{\omega}$ is dominated by some $g \in \mathcal{F}$.

 \mathcal{F} is **unbounded** if there is no $f \in \omega^{\omega}$ dominating every $g \in \mathcal{F}$.

 $\mathfrak{d}=\min\{|\mathcal{F}|:\ \mathcal{F}\subseteq\omega^{\omega} \text{ is dominating}\}.$

 $\mathfrak{b} = \min\{|\mathcal{F}|: \ \mathcal{F} \subseteq \omega^{\omega} \text{ is unbounded}\}.$

Proposition

 $\mathfrak{b} \leq \mathfrak{n}$.

The second bound – the bound number ${\mathfrak b}$

Barrelled argument

All metrizable barrelled spaces have dimension at least \mathfrak{b} . (Saxon–Sanchez-Ruiz '96)

All metrizable barrelled spaces have dimension at least b. (Saxon–Sanchez-Ruiz '96)

If A has (N), then the space of all simple functions on K_A is barrelled. (Schachermayer '82).

All metrizable barrelled spaces have dimension at least b. (Saxon–Sanchez-Ruiz '96)

If A has (N), then the space of all simple functions on K_A is barrelled. (Schachermayer '82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence $\langle \mu_n : n < \omega \rangle$ such that $\|\mu_n\| = 1$ and $\mu_n(a) \to 0$ for every $a \in A$.

All metrizable barrelled spaces have dimension at least b. (Saxon–Sanchez-Ruiz '96)

If A has (N), then the space of all simple functions on K_A is barrelled. (Schachermayer '82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence $\langle \mu_n : n < \omega \rangle$ such that $\|\mu_n\| = 1$ and $\mu_n(a) \to 0$ for every $a \in \mathcal{A}$. If $|\mathcal{A}| < \mathfrak{b}$, then there exists $c \in c_0$ dominating $\langle |\mu_n(a)| : n < \omega \rangle$ for every $a \in \mathcal{A}$.

All metrizable barrelled spaces have dimension at least b. (Saxon–Sanchez-Ruiz '96)

If A has (N), then the space of all simple functions on K_A is barrelled. (Schachermayer '82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence $\langle \mu_n : n < \omega \rangle$ such that $\|\mu_n\| = 1$ and $\mu_n(a) \to 0$ for every $a \in \mathcal{A}$. If $|\mathcal{A}| < \mathfrak{b}$, then there exists $c \in c_0$ dominating $\langle |\mu_n(a)| : n < \omega \rangle$ for every $a \in \mathcal{A}$. Put $\nu_n = \mu_n/c_n$.

All metrizable barrelled spaces have dimension at least b. (Saxon–Sanchez-Ruiz '96)

If A has (N), then the space of all simple functions on K_A is barrelled. (Schachermayer '82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence $\langle \mu_n : n < \omega \rangle$ such that $\|\mu_n\| = 1$ and $\mu_n(a) \to 0$ for every $a \in \mathcal{A}$. If $|\mathcal{A}| < \mathfrak{b}$, then there exists $c \in c_0$ dominating $\langle |\mu_n(a)| : n < \omega \rangle$ for every $a \in \mathcal{A}$. Put $\nu_n = \mu_n/c_n$. $\langle |\nu_n(a)| : n < \omega \rangle$ is bounded for every $a \in \mathcal{A}$ but $\|\nu_n\| \to \infty$.

Corollary

 $\mathfrak{n} \geq \max(\mathfrak{b}, \mathfrak{s}).$

Corollary

 $\mathfrak{n} \geqslant \mathsf{max}(\mathfrak{b}, \mathfrak{s}).$

Theorem (Balcar–Pelant–Simon '80)

It is consistent that $\omega_1 = \mathfrak{s} < \mathfrak{b}$. (Hence, it is consistent that $\mathfrak{s} < \mathfrak{n}$).

Corollary

 $\mathfrak{n} \geq \max(\mathfrak{b}, \mathfrak{s}).$

Theorem (Balcar–Pelant–Simon '80)

It is consistent that $\omega_1 = \mathfrak{s} < \mathfrak{b}$. (Hence, it is consistent that $\mathfrak{s} < \mathfrak{n}$).

Theorem (Shelah '84)

It is consistent that $\omega_1 = \mathfrak{b} < \mathfrak{s} = \omega_2$. (Hence, it is consistent that $\mathfrak{b} < \mathfrak{n}$).

Corollary

 $\mathfrak{n} \geq \max(\mathfrak{b}, \mathfrak{s}).$

Theorem (Balcar–Pelant–Simon '80)

It is consistent that $\omega_1 = \mathfrak{s} < \mathfrak{b}$. (Hence, it is consistent that $\mathfrak{s} < \mathfrak{n}$).

Theorem (Shelah '84)

It is consistent that $\omega_1 = \mathfrak{b} < \mathfrak{s} = \omega_2$. (Hence, it is consistent that $\mathfrak{b} < \mathfrak{n}$).

Note that $\mathfrak{d} \ge \max(\mathfrak{b}, \mathfrak{s})$.

Corollary

 $\mathfrak{n} \geq \max(\mathfrak{b}, \mathfrak{s}).$

Theorem (Balcar–Pelant–Simon '80)

It is consistent that $\omega_1 = \mathfrak{s} < \mathfrak{b}$. (Hence, it is consistent that $\mathfrak{s} < \mathfrak{n}$).

Theorem (Shelah '84)

It is consistent that $\omega_1 = \mathfrak{b} < \mathfrak{s} = \omega_2$. (Hence, it is consistent that $\mathfrak{b} < \mathfrak{n}$).

Note that $\mathfrak{d} \ge \max(\mathfrak{b}, \mathfrak{s})$. Also note that under Martin's axiom $\mathfrak{b} = \mathfrak{s} = \mathfrak{d} = \mathfrak{c}$, hence $\mathfrak{n} = \mathfrak{d}$ under MA.

Corollary

 $\mathfrak{n} \geq \max(\mathfrak{b}, \mathfrak{s}).$

Theorem (Balcar–Pelant–Simon '80)

It is consistent that $\omega_1 = \mathfrak{s} < \mathfrak{b}$. (Hence, it is consistent that $\mathfrak{s} < \mathfrak{n}$).

Theorem (Shelah '84)

It is consistent that $\omega_1 = \mathfrak{b} < \mathfrak{s} = \omega_2$. (Hence, it is consistent that $\mathfrak{b} < \mathfrak{n}$).

Note that $\vartheta \ge \max(\mathfrak{b}, \mathfrak{s})$. Also note that under Martin's axiom $\mathfrak{b} = \mathfrak{s} = \mathfrak{d} = \mathfrak{c}$, hence $\mathfrak{n} = \mathfrak{d}$ under MA.

Question

Is it consistent that $n < \mathfrak{d}$?

Algebra with (N) and cardinality ω_1

 $\mathcal N$ – the Lebesgue null ideal

 $\operatorname{cof}(\mathcal{N}) = \min\{|\mathcal{F}|: \ \mathcal{F} \subseteq \mathcal{N} - \operatorname{cofinal}: \ \forall A \in \mathcal{N} \exists B \in \mathcal{F}: \ A \subseteq B\}$

 $\mathcal N$ – the Lebesgue null ideal

 $\operatorname{cof}(\mathcal{N}) = \min\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{N} - \operatorname{cofinal}: \forall A \in \mathcal{N} \exists B \in \mathcal{F}: A \subseteq B\}$

Note that $\omega_1 \leq \mathfrak{d} \leq \operatorname{cof}(\mathcal{N}) \leq \mathfrak{c}$.

 \mathcal{N} – the Lebesgue null ideal

 $\operatorname{cof}(\mathcal{N}) = \min\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{N} - \operatorname{cofinal}: \forall A \in \mathcal{N} \exists B \in \mathcal{F}: A \subseteq B\}$

Note that $\omega_1 \leq \mathfrak{d} \leq \operatorname{cof}(\mathcal{N}) \leq \mathfrak{c}$.

Theorem (D.S.)

Assume that $\operatorname{cof}(\mathcal{N}) = \kappa$ for a cardinal number $\kappa < \mathfrak{c}$ such that $\operatorname{cof}([\kappa]^{\omega}) = \kappa$.

 \mathcal{N} – the Lebesgue null ideal

 $\operatorname{cof}(\mathcal{N}) = \min\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{N} - \operatorname{cofinal}: \forall A \in \mathcal{N} \exists B \in \mathcal{F}: A \subseteq B\}$

Note that $\omega_1 \leq \mathfrak{d} \leq \operatorname{cof}(\mathcal{N}) \leq \mathfrak{c}$.

Theorem (D.S.)

Assume that $\operatorname{cof}(\mathcal{N}) = \kappa$ for a cardinal number $\kappa < \mathfrak{c}$ such that $\operatorname{cof}([\kappa]^{\omega}) = \kappa$. Then, there exists a Boolean algebra \mathcal{B} with the Nikodym property and cardinality κ .

 $\mathcal N$ – the Lebesgue null ideal

 $\operatorname{cof}(\mathcal{N}) = \min\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{N} - \operatorname{cofinal}: \forall A \in \mathcal{N} \exists B \in \mathcal{F}: A \subseteq B\}$

Note that $\omega_1 \leq \mathfrak{d} \leq \operatorname{cof}(\mathcal{N}) \leq \mathfrak{c}$.

Theorem (D.S.)

Assume that $\operatorname{cof}(\mathcal{N}) = \kappa$ for a cardinal number $\kappa < \mathfrak{c}$ such that $\operatorname{cof}([\kappa]^{\omega}) = \kappa$. Then, there exists a Boolean algebra \mathcal{B} with the Nikodym property and cardinality κ .

So, if κ as above and $\operatorname{cof}(\mathcal{N}) = \kappa$, then $\mathfrak{n} \leq \operatorname{cof}(\mathcal{N})$.

Main Lemma

If $\operatorname{cof}(\mathcal{N}) = \kappa$, then for every countable Boolean algebra \mathcal{A} there exists a family $\{\langle a_n^{\gamma} \in \mathcal{A} : n \in \omega \rangle : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

Main Lemma

If $\operatorname{cof}(\mathcal{N}) = \kappa$, then for every countable Boolean algebra \mathcal{A} there exists a family $\{\langle a_n^{\gamma} \in \mathcal{A} : n \in \omega \rangle : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every anti-Nikodym sequence of measures $\langle \mu_n : n < \omega \rangle$ there exist $\gamma < \kappa$ and an increasing sequence $\langle n_k : k < \omega \rangle$ of naturals such that for every $k < \omega$ the following inequality is satisfied:

$$\left|\mu_{n_k}a_k^{\gamma}\right| > \sum_{j=0}^{k-1} \left|\mu_{n_k}a_j^{\gamma}\right| + k + 1.$$

Definition

$$\operatorname{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

Definition

$$\operatorname{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

Theorem (Koppelberg '77)

•
$$\omega \leq \operatorname{cof}(\mathcal{A}) \leq \mathfrak{c}$$
,

Definition

$$\operatorname{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

Theorem (Koppelberg '77)

- $\omega \leq \operatorname{cof}(\mathcal{A}) \leq \mathfrak{c}$,
- 2 (MA) If $|A| < \mathfrak{c}$, then $\operatorname{cof}(A) = \omega$.

Definition

$$\operatorname{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

Theorem (Koppelberg '77)

• $\omega \leq \operatorname{cof}(\mathcal{A}) \leq \mathfrak{c}$,

2 (MA) If
$$|A| < \mathfrak{c}$$
, then $\operatorname{cof}(\mathcal{A}) = \omega$.

Theorem (Just–Koszmider '91)

In the Sacks model there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}| = cof(\mathcal{B}) = \omega_1$.

Definition

$$\operatorname{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

Theorem (Koppelberg '77)

• $\omega \leq \operatorname{cof}(\mathcal{A}) \leq \mathfrak{c}$,

2 (MA) If
$$|A| < \mathfrak{c}$$
, then $\operatorname{cof}(\mathcal{A}) = \omega$.

Theorem (Just–Koszmider '91)

In the Sacks model there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}| = cof(\mathcal{B}) = \omega_1$.

Theorem (Pawlikowski–Ciesielski '02)

Assuming $cof(\mathcal{N}) = \omega_1$, there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}| = cof(\mathcal{B}) = \omega_1$.

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $\operatorname{cof}(\mathcal{A}) > \omega$.

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $cof(\mathcal{A}) > \omega$.

Corollary

Assuming $\operatorname{cof}(\mathcal{N}) = \kappa$ for κ such that $\operatorname{cof}([\kappa]^{\omega}) = \kappa$, there exists a Boolean algebra with cardinality κ and cofinality ω_1 .

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $\operatorname{cof}(\mathcal{A}) > \omega$.

Corollary

Assuming $\operatorname{cof}(\mathcal{N}) = \kappa$ for κ such that $\operatorname{cof}([\kappa]^{\omega}) = \kappa$, there exists a Boolean algebra with cardinality κ and cofinality ω_1 .

Question

Is there a consistent example of a Boolean algebra \mathcal{B} for which $\omega_1 < \operatorname{cof}(\mathcal{B}) < \mathfrak{c}$?

An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta\omega$.

An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem '69

Does there exist a Efimov space?

An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem '69

Does there exist a Efimov space?

Fedorčuk: CH, \Diamond , $\mathfrak{s} = \omega_1 \& \mathfrak{c} = 2^{\omega_1}$ Dow: $\operatorname{cof}([\mathfrak{s}]^{\omega}) = \mathfrak{s} \& 2^{\mathfrak{s}} < 2^{\mathfrak{c}}$ and many more...

An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem '69

Does there exist a Efimov space?

Fedorčuk: CH, \Diamond , $\mathfrak{s} = \omega_1 \& \mathfrak{c} = 2^{\omega_1}$ Dow: $\operatorname{cof}([\mathfrak{s}]^{\omega}) = \mathfrak{s} \& 2^{\mathfrak{s}} < 2^{\mathfrak{c}}$ and many more...

Theorem (Pawlikowski–Ciesielski '02, D.S.)

Assuming $cof(\mathcal{N}) = \omega_1$, there exists a Efimov space.

Thank you for your attention.